Functional

Category Theory

map

filter

map

functors

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

reduce

Category Theory

interface Mu extends Profunctor.Mu {}

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

functors

filter

filter

map

flatmap

flatmap

profunctors

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

map

map

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

() -> a -> b -> (c, d, e) -> f -> a(b)(c)[d](e, f)

map

filter

profunctors

profunctors

functors

filter

map

filter

(+ 1 1)

filter

A monad is a monoid in the category of endofunctors.

map

flatmap

interface Mu extends Profunctor.Mu {}

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

map

functors

collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

map

filter

list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)

category theory

flatmap

collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)

flatmap

(+ 1 1)