Functional
Category Theory
map
filter
map
functors
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
reduce
Category Theory
interface Mu extends Profunctor.Mu {}
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
functors
filter
filter
map
flatmap
flatmap
profunctors
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
map
map
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
() -> a -> b -> (c, d, e) -> f -> a(b)(c)[d](e, f)
map
filter
profunctors
profunctors
functors
filter
map
filter
(+ 1 1)
filter
A monad is a monoid in the category of endofunctors.
map
flatmap
interface Mu extends Profunctor.Mu {}
public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>
map
functors
collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
map
filter
list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)
category theory
flatmap
collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)
flatmap
(+ 1 1)