Functional
flatmap
category theory
flatmap
filter
interface Mu extends Profunctor.Mu {}
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
filter
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
λ
filter
map
filter
reduce
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
profunctors
A monad is a monoid in the category of endofunctors.
filter
flatmap
filter
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
filter
map
list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)
λ
filter
μ
Natural Transformations
() -> a -> b -> (c, d, e) -> f -> a(b)(c)[d](e, f)
(+ 1 1)
collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)
Natural Transformations
map
filter
Category Theory
>>==
interface Mu extends Profunctor.Mu {}
functors
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
map
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
μ
filter
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
functors
functors
functors