Functional

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

functors

(+ 1 1)

interface Mu extends Profunctor.Mu {}

Natural Transformations

filter

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

filter

default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()

μ

(+ 1 1)

filter

profunctors

filter

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

filter

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

filter

interface Mu extends Profunctor.Mu {}

filter

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

Category Theory

map

filter

filter

flatmap

category theory

A monad is a monoid in the category of endofunctors.

filter

filter

flatmap

reduce

collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)

functors

>>==

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

profunctors

filter

functors

filter

(+ 1 1)

reduce

filter

list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)

filter

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

reduce

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int