Functional

μ

category theory

flatmap

flatmap

default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()

default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()

std::reduce(std::execution::seq, v.cbegin(), v.cend())

flatmap

filter

functors

profunctors

map

default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()

filter

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

(+ 1 1)

Category Theory

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

A monad is a monoid in the category of endofunctors.

flatmap

filter

functors

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

flatmap

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

(+ 1 1)

filter

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

interface Mu extends Profunctor.Mu {}

map

>>==

flatmap

filter

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

μ

category theory

λ

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

map

reduce

filter

filter

map

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

filter

filter

functors