Functional
μ
category theory
flatmap
flatmap
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
std::reduce(std::execution::seq, v.cbegin(), v.cend())
flatmap
filter
functors
profunctors
map
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
filter
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
(+ 1 1)
Category Theory
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
A monad is a monoid in the category of endofunctors.
flatmap
filter
functors
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>
flatmap
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
(+ 1 1)
filter
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
interface Mu extends Profunctor.Mu {}
map
>>==
flatmap
filter
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
μ
category theory
λ
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
map
reduce
filter
filter
map
public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>
filter
filter
functors